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Purpose
• One of the most common detector configurations is a photo-multiplier 

tube attached to a coaxial cable. 

• The signal is integrated or digitized at the end of a long cable.  

• These set of notes will provide basic understanding of how to analyze 
the signal and propagate it to the end of the cable. 

• Much of this material can be obtained from classic text books on 
detector instrumentation such as Knoll (2012).

• In these set of notes, the attempt is to be brief and provide a complete 
case study and give some instinct. I also provide some guidance to 
understand pathologies that are common in these systems. 

• These notes come together with a spread sheet and a mathematica 
notebook. These can be used to perform many of the calculations here. 
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Photo-Multiplier Tube
• Photons are converted to charge 

by a photocathode with low work 
function.  

• Electric fields accelerate and 
multiply the primary electron in 
several stages. Each stage has 
multiplication of ~4-5.  

• Typical Gain = AVkn ~ 106- 107 

where V is the typical voltage ~ 
few 1000 V. 

• Time resolution < 10 ns.   

• Transit time can be <1 microsec 

• PMT first stage is sensitive to 
small magnetic fields.  

• Many clever geometries. 

Photon

From Hamamatsu
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Photomultiplier (PMT) basics
Electrotr
ode	
  

Nominal	
  
Ra0o Resistor Voltage

dampng	
  or	
  
load	
  
resistor

stabiliza
0on	
  
capacito

Voltage	
  
drop

Es0mated	
  
Gain Power	
  Wa; capacitor	
  

charge	
  C

K -­‐2000

16.8 1650000 619.1369606 7 -­‐0.232321561

Dy1 -­‐1380.863039

4 540000 202.6266417 5.733232362 -­‐0.076032511

Dy2 -­‐1178.236398

5 780000 292.6829268 6.35809185 -­‐0.109824738

DY3 -­‐885.5534709

3.33 440000 165.1031895 5.123567144 -­‐0.061952416

DY4 -­‐720.4502814

1.67 270000 101.3133208 3.615571693 -­‐0.038016255

dy5 -­‐619.1369606

1 150000 56.28517824 2.193578227 -­‐0.021120142

dy6 -­‐562.8517824

1.2 180000 67.54221388 2.576815687 -­‐0.02534417

dy7 -­‐495.3095685 0

1.5 220000 82.55159475 3.059032499 -­‐0.030976208

dy8 -­‐412.7579737 100

2.2 330000 0 123.8273921 4.215612053 -­‐0.046464312 0

dy9 -­‐288.9305816 100

3 440000 0.000000044165.1031895 5.123567144 -­‐0.061952416 7.26454E-­‐06

dy10 -­‐123.8273921 100

3.4 330000 0.000000044123.8273921 4.215612053 -­‐0.046464312 5.44841E-­‐06

P 0 open

SUM 5330000 7441972.676 0.75 W
Current -­‐0.000375235 amp

Example of a base for 
Hamamatsu R5912 10 
stage tube. 

Considerations

Max voltage. 

Max voltage drop from 
K to the first dynode 
determines the first 
stage gain. 

Total current should be 
high enough compared 
to expected current 
through tube. 

The charge in the 
stabilization capacitors 
should be larger than 
expected charge from a 
signal pulse. 

If power is too high it 
can heat up the base. 

Gain at each stage is 
calculated using g(V) = 
0.04*V-0.0007*V24



Basic calculation of gain

• For the previous calculation a model for gain was used from a handbook.  The model is different for 
each type of photo-cathode material. This one is for bialkali.  

• This resulted in a voltage versus gain curve on the right. The slope of the log/log curve is the 
exponent of the voltage  n= ~7.0  

• This also means that if voltage changes by 1% => gain changes by 7 %
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PMT equivalent circuit
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• The circuit on slide 3 for the PMT base looks complicated. How is it to be 
modeled ? Surely the shape of the pulse depends on all those resisters and 
capacitors ? 

• Luckily there is Norton’s theorem for passive circuits: it states that no matter how 
complicated a network the equivalent circuit is a current source in parallel with a 
resistor (for DC circuits) or impedance for AC circuits.  

• In the case of a PMT it would be a resistor and a capacitor. The values of these can 
be calculated from the network, but we don’t have to. We can just measure them. 

• For the current source we can assume it is a delta function for a single electron 
pulse; but it is better to assume that the current also has an exponential shape to 
account for scintillation lifetime.  

i(t) C R v(t)

PMT equivalent 

We assume that there are no inductances. And the 
current produced at the anode has an exponetial fall. 

i(t) = q0

τ s
e− t /τ s  for t > 0,  and 0 for t < 0

Recall that R could represent the coaxial cable; if it 
has impedance 50 Ω then R = 50 Ω.  (we will work on this 
later).  C represents various capacitances on the base. Set τ = RC

i(t) = C dv(t)
dt

+ v(t)
R



PMT signal solution
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i(t) = q0

τ s
e− t /τ s  for t > 0,  and 0 for t < 0

Set τ = RC
 There are two ways to solve this.   First we do the differential equation. 

i(t) = C dv(t)
dt

+ v(t)
R

v(t) = − q0R
(τ −τ s )

× e− t /τ s − e− t /τ( )  for τ ≠ τ  and t > 0

v(t) = q0R
τ s

2 t × e− t /τ s  for τ = τ s

Second way is by Fourier transform. This will allow much more flexibility in the 
long run.  We replace the differential equation by its Fourier transform.

i(t)⇒ I(ω ) = q0

τ s
τ s

(1+ iωτ s )

Recall that the impedance of C and R in parallel is R
(1+ iωRC)

I(ω ) =V (ω )× (iωτ +1)
R

⇒V (ω ) = q0R × 1
(1+ iωτ s )(1+ iωτ )



PMT signal solution by Fourier transform
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We need to take inverse Fourier transform of 

V (ω ) = q0R
(1+ iωτ s )(1+ iωτ )

use partial fraction separation first.  

V (ω ) = − q0R
(τ −τ s )

τ s
(1+ iωτ s )

− τ
(1+ iωτ )

⎡

⎣
⎢

⎤

⎦
⎥

by inspection we get 

v(t) = − q0R
(τ −τ s )

e− t /τ s − e− t /τ( )u(t) where u(t) is the unit step function. 

if τ=τ s  then 

V (ω ) = q0R
(1+ iωτ )2 = q0R

τ 2
1

(1 /τ + iω )2

by inspection (use standard tables of Fourier transforms)  

v(t) = − q0R
τ 2 t × e− t /τ



example PMT signal plots
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Here we will plot what the PMT pulse looks like. First some 
numbers:  Recall that q0  is the charge at the anode and so it includes 
the gain from the PMT.  
 q0 = GNe   where G  is the gain and Ne is the charge at the cathode. 
Assume G = 107   and N  =  1⇒ q0 = 1.6 ×10−12C = 1.6pC

We now plot 3 cases 
τ s < τ :   set τ s = 1ns and τ=5 ns
RC = 5ns⇒C = 0.1nF  for R = 50 Ω
τ s = τ = 5ns

τ s > τ :   set τ s = 25ns and τ=5 ns
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Rise time is the shorter time and fall time is the longer time



pmt pulse with inductances
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i(t)
C R

v(t)
L

What happens if there is some inductance at the anode of a PMT. 
This could happen due to bad cabling. Inductances might be
difficult to avoid. 

If the inductance is in parallel then the DC component is shorted out. The 
integral of the output pulse must be 0.  
 

Recall that the impedance of L, C and R in parallel is 

Z = 1
(1 / R + iωC +1/ iωL)

I(ω ) =V (ω ) / Z⇒V (ω ) = q0

(1+ iωτ s )
× iωR

(iω + R / L −ω 2RC)
Set τ = RC  and ω 0

2 = 1/ LC

V (ω ) = q0R
(1+ iωτ s )

× iω
(iω +τ (ω 0

2 −ω 2 ))
  replace iω → s 

For t > 0 Laplace transform is equivalent.  Also complete the square.  

V (s) = q0R
ττ s

1
s +1/τ s

⎛
⎝⎜

⎞
⎠⎟

s
(s + 1

2τ )2 + (ω 0
2 − 1

4τ 2 )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

set ω '2 = (ω 0
2 − 1

4τ 2 )



pmt pulse with inductance.
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The next two slides can be skipped if too detailed. But the point is that an inductance 
creates sinusoidal oscillations in the output pulse. This can be analyzed. 

V (s) = q0R
ττ s

1
s + 1

τ s

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

s
(s + 1

2τ )2 +ω '2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

First we have to take this apart by partial fractions.  This is going to get complicated, but doable. 

V(s) = q0R
ττ s

−A 1
s + 1

τ s
+ B 1

(s + 1
2τ )2 +ω '2

+ A
(s + 1

2τ )

(s + 1
2τ )2 +ω '2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The terms are put into canonical forms that can be compared to Laplace transforms in 
a handbook.  The answer to an inverse transform is as follows.  

v(t) = q0R
ττ s

−A(e− t /τ s − e− t /2τ Cos(ω 't))+ Be− t /2τ Sin(ω 't)( )

A = 1
τ s

1
(1 /τ s −1/ 2τ )2 +ω '2
⎡

⎣
⎢

⎤

⎦
⎥

B = (1 / 2τ )2 − (1 / 2ττ s )+ω '2

((1 /τ s −1/ 2τ )2 +ω '2 )ω '
      Both A and B have units of time.  

Notice that when ω 0 → 0,  ω ' becomes imaginary, and the oscillatory terms turn into
exponentials that go back to the solution without inductance.  

Determine the poles of this formula



table and plots for pmt with inductance
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tau
ns

w0
Mhz

w’
Mhz A/ts B/ts

1 2 1 Ghz 968 0.042 0.208

2 2 10
MHz i*250 -0.67 -0.67*i

3 10 100 
MHz 86.6 1.33 0

4 10 30
MHz i *40 1.91 i*2.18

Set some parameters 
q = 1.6 ×10−12C
R = 50Ω
τ s = 5 ×10−9 sec

we are going to let τ = RC  and ω 0 = 1/ LC  vary

0 1.×10-8 2.×10-8 3.×10-8 4.×10-8 5.×10-8
-0.010

-0.008
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-0.004

-0.002

0.000
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V
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0 5.×10-81.×10-71.5 ×10-72.×10-72.5 ×10-73.×10-7

-0.004

-0.002

0.000

0.002

Time sec

V
ol
ts

3

4

Effects of inductance at the output can cause oscillations or overshoots if the 
characteristic oscillation timescale Sqrt[LC] is close to the RC time constant of the PMT

in all cases there is a positive tail



example 2 
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i(t)
C R

v(t)

L

This might be a more likely way the network becomes. 
 

Notice that R and L are in series. And V0  is across R.   

Z = 1
(1 / (R + iωL)+ iωC)

× R
(R + iωL)

I(ω ) =V (ω ) / Z⇒V (ω ) = q0

(1+ iωτ s )
× R

(1+ iωRC −ω 2LC)
Set τ = RC  and ω 0

2 = 1/ LC

V (ω ) = q0R
(1+ iωτ s )

× 1
(1+ iωτ −ω 2 /ω 0

2 ))
  replace iω → s 

For t > 0 Laplace transform is equivalent.  Also complete the square.  

V (s) = q0Rω 0
2

τ
1

s +1/τ s

⎛
⎝⎜

⎞
⎠⎟

1
(s +ω 0

2τ / 2)2 +ω 0
2 (1−ω 0

2τ 2 / 4)
⎛
⎝⎜

⎞
⎠⎟

set ω '2 =ω 0
2 (1−ω 0

2τ 2 / 4)



solution inductance in series
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We will solve this another way that might be more straight-forward. 

V (s) = q0Rω 0
2

τ
1

s +1/τ s

⎛
⎝⎜

⎞
⎠⎟

1
s +1/τ e + iω '

⎛
⎝⎜

⎞
⎠⎟

1
s +1/τ e − iω '

⎛
⎝⎜

⎞
⎠⎟

1/τ e =ω 0
2τ / 2,  ω '=ω 0 (1−ω 0

2τ 2 / 4)1/2

This can be easily solved by partial fractions to show

v(t) =  q0Rω 0
2

τ
× e− t /τ s

(1 /τ s −1/τ e )
2 −ω '2

+ ie− t (1/τ e+iω ')

2ω '(1 /τ s −1/τ e − iω ')
− ie− t (1/τ e−iω ')

2ω '(1 /τ s −1/τ e + iω ')
⎡

⎣
⎢

⎤

⎦
⎥

This can be easily seen to be a real function of exponentials and sinusoidals.  
If ω ' is not real then one ends up with just exponentials. 
Based on this we can conclude that a general function such as 
v(t) =  Ae− t /τ1 + Be− t /τ 2 Sin(ωt)+Ce− t /τ 2 Cos(ωt)
would work well to fit a pulse from a phototube connected to unknown impedances.
The relative values and signs of A, B, and C determine the bipolar shape of the pulse.

Next slide has example plots from above



table and plots for pmt with inductance in series
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tau
ns

w0
Mhz

w’
Mhz

1 2 1 Ghz 0

2 2 400
MHz 366

3 30 100 MHz 112*i

4 30 30
MHz 26.8

Set some parameters 
q = 1.6 ×10−12C
R = 50Ω
τ s = 5 ×10−9 sec

we are going to let τ = RC  and ω 0 = 1/ LC  vary 1

2

3

4

Effects of inductance at the output can cause oscillations or overshoots if the 
characteristic oscillation timescale Sqrt[LC] is close to the RC time constant of the PMT
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Coaxial Cable
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inner conductor diameter d

outer conductor diameter D

dielectric ε=εr ε0
permeability μ=μrμ0

We will do some elementary calculations first, and then 
perform a more detailed analysis.  

The idea is to use these notes as reference when needed. 

Recall that the same treatment can be used for any pair of 
conductors that are parallel to each other and are used to 
transmit an electrical signal.  

Signal gets transmitted by alternating electric and magnetic 
fields between the two conductors.  



Capacitance of coaxial cable
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d
D

ε=εr ε0
Assume a charge of λ  per unit length on the inner 
conductor.  Then for length dl  the total charge is q = λdl
The electrical field at radius d < r < D is radial and given by 
2πrdlErε0ε r = q = λdl

Er =
λ

2πrε0ε r
Voltage difference 

ΔV = λ
2πε0ε r

1
r
dr =

d

D

∫
λ

2πε0ε r
log(D / d)

Capacitance per unit length c =  λ
ΔV

= 2πε0ε r
log(D / d)



Inductance of coaxial cable
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d
D

μ=μrμ0

Assume there is current I  in the inner conductor and - I  in outer. 
The magnetic field in the cable for d < r < D is given by. 
2πrB = µ0µr I

B = µ0µr I
2πr

we take a rectangular surface area S  (length ι) normal to the B field which is
circular around the central conductor.  

φ = Bds = l µ0µr I
2πr

dr
d

D

∫
S
∫

Inductance per unit length = φ
ι* I

= µ0µr

2π
log(D / d)

S

 Recall some numbers 

c= 1
µ0ε0

µ0 = 4π  10−7H /m   and so ε0 = 1/ (µ0c
2 ) ≈ 8.85 10−12F /m
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C

v(z0+dz,t)

L
+-

v(z0,t) C

v(z,t)

L
C

v(A,t)

L

Cable is of length A, and each section has inductance L = ℓdz
and capacitance C = cdz. Now we get two coupled equations. j(z,t)  is the current at z,  and t. 

v(z + dz,t) - v(z,t) =− ℓdz dj(z,t)
dt

  This has to do with the voltage drop across the inductor. 

j(z + dz,t)− j(z,t) = −cdz dv(z,t)
dt

 This is the current going to ground through the capacitor

dv(z,t)
dz

= −ℓ dj(z,t)
dt

dj(z,t)
dz

= −c dv(z,t)
dt

         ⇒         d
2v(z,t)
dz2 = ℓc d

2v(z,t)
dt 2

We are going to use a double Fourier transform for the variables z,t. The conjugate 
variable for length is the wave number, k  and for time it is frequency ω . 

  v(z,t) = V (k,ω )∫ e+ iωte− ikzdkdω;     j(z,t) = J(k,ω )∫ e+ iωte− ikzdkdω

j(z0,t)



Cable transmission (lossless) example
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Plugging into the wave equation (this is true only when ω  and k  are not 0) 
−k2V (k,ω ) = −ℓcω 2V (k,ω )
The condition of the wave equation is that 

k2 = ℓcω 2   or     β =ω / k = 1/ ℓc

The velocity of the wave through the cable is given by 1/ ℓc. Going back to the coupled equations.  
ikV (k,ω ) = iωℓJ(k,ω )
This gives us the cable impedance which is real.  

Z0 =
V (k,ω )
J(k,ω )

= ℓω
k
= ℓ

c
 .....    We now use the formulas for ℓ and c. 

β = 1/ ℓc = 1/ µ0µr

2π
log(D / d) 2πε0ε r

log(D / d)
=

clight
µrε r

   ... only depends on dielectric.

Z0 =

µ0µr

2π
log(D / d)

2πε0ε r
log(D / d)

= log(D / d)
2π

µ0µr

ε0ε r
= log(D / d)

2π
µ0clight

µr

ε r

Z0 = 60Ω× µr

ε r
log(D

d
)



Graphical Solution
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The solution to the wave equation is a continuous function with the following form
v(z,t) = f (kz ±ωt)
The sign of k determines the direction of the pulse movement. 
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k = 100
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v =ω / k = 0.05
CableLeng = 1.0

t = 0 t = 5 t = 10



Solution
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We can also think about the solution in Laplace or Fourier space 
(also known as Phaser space) 
v(z,t) = f (kz ±ωt)
Notice that this could be considered a function with a time shift t→ t ± z /υ
The time shift is z dependent.  i.e. given a location along the cable, the 
signal is time shifted by ± z /υ. In Fourier space this is just a phase shift. 
 On page 8 we obtained the solution to a PMT pulse. In case of a cable 
attached to the PMT with a velocity constant υ, the solution at z is 

V (ω )→V (ω )× e− iω (z/υ ) = q0R
(1+ iωτ s )(1+ iωτ )

e− iω (z/υ )

This is going to be very useful. We can call the phase factor the propagator along the 
cable. If a cable is of length l,  then every time the signal goes from one end to the 
other it gets a phase factor e− iω (l /υ )



Some notes
• It is useful to understand the cable in terms of some analogies.  

• The inductance represents the tendency of the cable to oppose a change in current. It 
slows down the movement of charge down a cable. 

• The capacitance can be thought of as the tendency of the cable to oppose a change in 
voltage.  The characteristic impedance is the balance of the L and C. 

• Any shunt resistances (through the dielectric) along the cable act as dissipators of the 
charge, somewhat  like leaks in a pipe. 

• As the charge flows through the inductor (if the rate is increased too fast it is slowed), it 
fills the capacitor until the voltage increases so that the charge can flow forward again. 

• For an infinite cable, if the voltage is turned on suddenly at one end, the current flows 
continuously filling up the capacitors. Therefore an infinite cable is the same as a resistor.

• As the current reaches the end of the cable, if it sees a resistor of the same value as the 
cable impedance then it is as if the cable is infinite.  This is called proper cable 
termination. 

• The impedance of the cable is finite only for high frequencies or small wavelength 
(compared to its length). 

23



Imperfect termination
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R=Z0

R=0

R=Inf

If the cable is shorted, charge traveling on the center will return 
on the shield. A voltage pulse will return with reversed polarity. 

If the cable is open, charge traveling on the center will return on 
the center. A voltage pulse will return with same polarity. 

If the cable is terminated correctly charge traveling on the center 
will dissipate in the load. A voltage pulse will not return. 



Impedance matching
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Suppose there are two infinite cables attached in the middle.  
cable 1 has impedance Zc  and cable 2 impedance Zl

Cable 2 can also be thought of as the load (or termination for cable 1). 

At the boundary, there is a current incident from the left:   ii (t)
There is a reflected current: ir (t);  There is a transmitted current: it (t)
ii (t)+ ir (t) = it (t)
The cable impedance, in general, is complex and frequency dependent, and so it is better to use
the Fourier transforms of the currents and voltages.  
Ii + Ir = It      Vi +Vr =Vt     and  Vi = ZcIi      Vr = −ZcIr     Vt = Zl It

⇒  Ii − Ir =
Zl
Zc

It

The sign of the voltage for reflected current is important.  Secondly, imagine that cable 2 is 
the input to a scope. Then the scope is going to measure Vt . 

Zc Zl
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Zc Zl

Reflection and transmission 

Ii ⇒                                                                            It = Ii ×
2Zc

Zl + Zc

⇒

Ir = It ×
Zc − Zl

2Zc

= Ii
Zc − Zl
Zc + Zl

⇐

Vr =Vi
Zl − Zc

Zc + Zl
                                                    Vt =Vi ×

2Zl
Zc + Zl

= T ×Vi

As   Zl →∞,    the reflection Vr →Vi       Vt → 2Vi
But as Zl → 0,  The reflection Vr →−Vi     Vt → 0

For   ease of use we are going to use Λl =
Zl − Zc

Zc + Zl
If there is a termination at the source then there will be reflections from the source end when 

a reflected pulses reaches:   Λs =
Zs − Zc

Zc + Zs

   We will use this later.  



Pulse train
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ZlZcZs

Imagine that at the source I start V (ω ),  what will I measure across the load ?

V (ω )→V (ω )e− iω (l /υ ) →V (ω )e− iω (l /υ )T  ... This is the first pulse T= 2Zl
Zl + Zc

V (ω )e− iω (l /υ )Λl →V (ω )e−3iω (l /υ )ΛlΛsT .......This is the second pulse
V (ω )e−3iω (l /υ )Λl

2Λs →V (ω )e−5iω (l /υ )Λl
2Λs

2T .....This is the third pulse

⇒V (ω )Te− iω (l /υ )( e−2iω (l /υ )ΛlΛs⎡⎣ ⎤⎦
n=0

∞

∑
n

)   .... This is  a geometric series.  

=V (ω )Te− iω (l /υ ) 1
1− e−2iω (l /υ )ΛlΛs

v(t) = V (ω )Te− iω (l /υ ) 1
1− e−2iω (l /υ )ΛlΛs

e+ iωt dω
2π−∞

∞

∫
The solution is an inverse Fourier transform of the above. If (ΛlΛs <1) is real then the 
pulse shape is preserved and it just gets smaller and smaller for each subsequent reflection.
However, the source and load impedances may depend on ω , then there will be a distortion on 
the pulse as it bounces back nd forth.  

length=l and velocity v
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τ l = 1/ 3
T = 3   (cable length in time)
ΛlΛs = 0.7



Cable dispersion
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C

v(z0+dz,t)

L
+-

v(z0,t)

C

v(z,t)

L
C

v(A,t)

L

j(z0,t)

R G G GR R

Cable is of length A, and each section has inductance L = ℓdz and series resistance R =  rdz
and capacitance C = cdz and conductance G  =  gdz. Two coupled equations are now complicated.  
dv(z,t)
dz

= −ℓ dj(z,t)
dt

− r j(z,t)

dj(z,t)
dz

= −c dv(z,t)
dt

 -  g v(z,t)        ⇒  This leads to the telegraph equation.        

d 2v(z,t)
dz2 = ℓc d

2v(z,t)
dt 2 + ℓg dv(z,t)

dt
+ rc dv(z,t)

dt
+ rgv(z,t)

d 2 j(z,t)
dz2 = ℓc d

2 j(z,t)
dt 2 + ℓg dj(z,t)

dt
+ rc dj(z,t)

dt
+ rg j(z,t)

This is still a linear system (output doubles if input doubles) and therefore it can be solved using
Fourier or Laplace analysis.  But to implement it fully requires a numerical calculation. 



General formula for impedance

30

 We again start with the definition

 v(z,t) = V (k,ω )∫ e+ iωte− ikzdkdω;     j(z,t) = J(k,ω )∫ e+ iωte− ikzdkdω

Then 
−ikV (k,ω ) = −rJ(k,ω )− iωℓJ(k,ω )
−ikJ(k,ω ) = −gV (k,ω )− iωcV (k,ω )
This gives 

Z = V
J
= r + iωl

g + iωc
                care needed:  g is conductance per unit length.

In the limit of r,  g→  0,  we get back the usual formula Z0 = ℓ / c
For most practical dielectrics g is very small, and r  is the dominant factor.
But even r  tends to be small compared to ωℓ.
For most practical cables, just using Z0  as the impedance to determine what happens at the 
termination is sufficient.  However,  generally only a small phase shift can be expected 
at the termination point.  
The series resistance r   is frequency dependent and increases with frequency. We will calculate this. 



Telegraph equation
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d 2v(z,t)
dz2 = ℓc d

2v(z,t)
dt 2 + ℓg dv(z,t)

dt
+ rc dv(z,t)

dt
+ rgv(z,t)

−k2 = −ℓcω 2 − iω (ℓg + rc)+ rg
Set β 2 = 1/ ℓc      This is the velocity when there is no dissipation. 
β 2k2 = (ω −ω1)2 +ω 2

2

ω1 = i
(g / c + r / ℓ)

2
   and ω 2

2 = g2

4c2 +
r2

4ℓ2 −
rg

2ℓc
If g / c≪ω  and r / ℓ ≪ω    we can ignore ω 2  to first order. 
Now we try to get the propogation constant for this wave 

v =ω / k ≈ ωβ
(ω −ω1)

≈ β(1+ ω1

ω
).....    remember that ω1  is imaginary with units of 1/time, 

and so it will diminish the wave.  The propagation factor is e− iω (l /v)

Phase factor for dissipative wave is ∼ω (l / β )(1−ω1 /ω )
⇒ e− iω (l /β ) × e−(l /β )×(g/c+r/ℓ)/2

To first order the wave simply gets exponentially reduced over all frequencies with 

a propagation constant of   γ = (gZ0 + r / Z0 )
2



Cable Attenuation due to skin effect
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γ = (gZ0 + r / Z0 )
2

 has units of 1/distance. This means it is reciprocal of the attenuation length.

For excellent dielectrics there should be no loss of current, and therefore we will set g ≈ 0.
 The series resistance (r) is a function of frequency because of the skin effect. We will
derive the skin effect in another series of notes, but here we take the simple approximation. 

The approximation states that for frequency ω , all of the current in a conductor is at the surface 

within depth of  δ s =
2ρ

ω (µRµ0 )
   where ρ  is resistivity and µ=µRµ0  is magnetic permeability.

For copper:    ρ=1.68 ×10−8Ω.m    and µ ≈ µ0 = 4π ×10−7H /m
Engineers prefer    to use cycle frequency   f  =ω /2π
   f delta(micron) delta(mm)

60 Hz 8421 8.4

1 kHz 2062 2.1

10kHz 652 0.65

100kHz 206 0.21

1MHz 65 0.065

10Mhz 21 0.021

100Mhz 6.5 0.0065

Notice that the skin depth is <<1 mm for 
frequencies above MHz. In these cases we 
can ignore the thickness of the wire and 
just calculate the surface volume to 
calculate the resistance at that frequency

Also notice that for high frequencies one 
could make wires that just have excellent 
surface conductors. We are going to 
assume solid copper, however. 



Coaxial cable series resistance

33

d
D

ε=εr ε0

We use the surfaces of the inner and outer conductors and put them in series to get 
the total resistance per unit length:   

r =  ρ( 1
πdδ

+ 1
πDδ

)       Now we use this to calculate the propagation constant

γ = 1
2Z0

ρ
πdδ

+ ρ
πDδ

⎡
⎣⎢

⎤
⎦⎥
= 1

2 2πZ0

ωµRµ0ρ
1
d
+ 1
D

⎡
⎣⎢

⎤
⎦⎥

 We can now calculate this for various types of cables. Most important:  attenuation increases 

as ω    or the attenuation length decreases with sqr-root of frequency.  

cable Z0 (Ohm) beta/c
(velocity)

C (pF/m) core dia
(mm)

Shield 
dia (mm)

1/gam 
(m) 

DB/100ft 
@100Mhz

RG6/U 75 0.68 65.6 1.024 4.7 102 2.6(2.7)

RG8/U 50 0.69 96.8 2.17 7.2 203 1.3(1.9)

RG58/U 50 0.71 93.5 0.81 2.9 77 3.4(4.6)

RG59/U 73 0.659 70.5 0.644 3.71 97.7 2.7(3.4)

RG174/U 50 0.68 98.4 7x0.16 1.5 32 8.2(8.9)

Commonly used cables. RG6 is the TV cable. RG174 has 7 strands, we assume effective 
diameter of burden to be ~2 times the diameter of a strand.  The velocity and attenuation 
are  calculated. They are slightly different from the specs which are in brackets. (from 
Moore,Davis,Coplan)



What is DB ?
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Let's do some cleanup here. 

First attenuation is  given by    A(ω ) = e− l×γ = e
− l⋅ 1

2 2πZ0
µRµ0ρ

1
d
+ 1
D

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥ ω

Engineers like to use DB scale which is Adb = -20 × Log10 (A)

Adb

l
= 20
Ln[10]

1
2 πZ0

µRµ0ρ
1
d
+ 1
D

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥ ×103 f /Mhz

Adb

l
= 7.12 ×10−6 1

d
+ 1
D

⎡
⎣⎢

⎤
⎦⎥
× f /Mhz

The nice thing about this scale is that you just have to multiply by the length and Sqrt[f] to get the Adb

But for physicists it is totally confusing, and we are quite allowed to use the attenuation length
at 1 Mhz as the quantity to remember.  

We are now going to use this result to simulate what happens to a pulse over a length of
cable.    The assumptions are that only high frequencies matter, and that the cable is much 
longer that the longest wavelength in the signal.  

For RG58/U A(ω )=e− l ω ×Const   Const = 5.16 ×10−7 / (m Hz)

For RG59/U Const = 4.08 ×10−7 / (m Hz)
Always remember ω=2πf  whenever using these formulas.  



Example cable attenuation calculation
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Use a discrete Fourier transform. Careful of the normalization and also the conventions
of any particular computer program. Use definition: ω = 2π f  
We setup time scale T=2 ×10−7 sec  and number of bins N=101. 

Then δ=2 ×10−9  and   δ f = 1/T   and frequency range is  frange =
1
T

(N −1)
2

 First we calculate v(tk ) = − q0R
(τ −τ s )

e− t /τ s − e− t /τ( )u(t) for tk = δ × k    k = 0,N ,   τ s = 5ns,   τ = 10ns

Then we take the DFT   V(ω j ).   ω j = 0 is usually the first element, and often

V (ω j ) needs to be shifted by (N -1) / 2 bins to correspond to ω j = 2πδ f × j     j  = − (N −1)
2

,+ (N −1)
2

We then reweight the Va−shifted (ω j ) =Vshifted (ω j )× e
−5.16×10−7 (L/m ) Abs[ω j ]    for cable length L. 

We may have to shift the Va−shifted   back to Va (ω j ) and take the inverse DFT. 
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red: input 
green: 20 m RG58/U 
blue: 40 m RG58/U

I have shifted the waveform to display how 
an early and late tail develops when high 
frequencies are attenuated. 

Notice the slight upturn at the end of the plot 
for long cable length. This is a consequence 
of the DFT which is N-periodic.  The upturn 
actually belong on the early side of the 
waveform. 



conclusions
• In these notes I have examined one of the most common 

detector configurations in particle and nuclear physics: a 
photomultiplier tube coupled to a long cable.  

• The PMT can be modeled as a current source with an 
impedance.  

• The cable transmission can be modeled over most of the 
frequencies as a phase shift and an attenuation that goes as 
Sqrt[frequency]. 

• If there is an impedance mismatch, we can also model the 
effect as an infinite series with appropriate attenuation. 

• The set of equations introduced in these slides can be used for 
creating an accurate simulation of waveforms from the detector 
with tuning of a small set of parameters.  
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